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Parameter-adaptive identical synchronization disclosing Lorenz chaotic masking
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A parameter-adaptive rule that globally synchronizes oscillatory Lorenz chaotic systems with initially dif-
ferent parameter values is reported. In principle, the adaptive rule requires access to the three state variables of
the drive system but it has been readapted to work with the exclusive knowledge of only one variable, a
potential message carrier. The rule is very robust and can be used to trace parameter modulation conveying
hidden messages. The driven system is defined according to a drive-driven type of coupling that guarantees
synchronization if parameters are identical. From any arbitrary initial state, the parameters of the driven system
are dynamically adapted to reach convergence to the drive parameter values. At this point, synchronization
mismatch or parameter tracing is used to unmask any potential hidden message.
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[. INTRODUCTION dence of states in the drive and driven systems. In phase
synchronizatiorf23] the phases of the two systems are syn-

Due to the fact that the power spectrum of a chaotic signathronized while the amplitudes vary chaotically and are
has some components that can remind us of a white noisgractically uncorrelated. When a shifted-in-time coincidence
deterministic chaos has been extensively studied as a poteof states in the drive and driven systems appears it is some-
tial carrier able to mask messages that would be virtualltimes referred as lag synchronizati¢®4] and, finally, in
impossible to violate through conventional signal processingjeneralized synchronizatiof25] a functional relationship
techniques. However, some nonlinear dynamic forecastinpetween the drive and driven systems can be found. In order
techniqueq 1,2] based on the reconstruction of the phase-to achieve synchronization two main coupling schemes have
space dynamics have proved to be good at recoveringeen proposed. In one of them, originally reported by Pec-
masked messages in some circumstances, challenging thera and Carrol[26], one or more signals from the drive
pretended potentiality of chaotic carriers for secure commusystem are used to substitute one or more variables in the
nications. Moreover, some other approaches closer to thériven system. In the other scheme, called feedback coupling
control-engineering field are starting to prove their ability to[27], one or more of the drive system variables are fed as a
control chaos in some respe¢8 and, in particular, to dis- first order adjusting term added to the corresponding equa-
close possible messages hidden in a chaotic pafierf. tion in the driven system.

Four main ways to hide messages in chaotic signals have If the drive and driven systems have the same structure
been reported. One of the methd@s10| uses small pertur- and parameter values, identical synchronization can be
bations to make the symbolic dynamics of a chaotic oscillaachieved simply by designing the appropriate coupling
tor follow a desired symbol sequence. The other three mettscheme, whereas if both systems are different, even slightly,
ods mask a small information-bearing signal in a largeidentical synchronization does not occur. This is the rational
chaotic signal. In some cases the message is added directlyibehind the use of chaotic systems in secure communication:
the chaotic signal generated by the drig11], in other unless the precise parameter values of the transmitter are
cases the message is included as part of the differential equinown, identical synchronization, and consequently message
tions of the transmitter to modulate the carrying variabledecoding, will not be possible. However, general synchroni-
[12-14 or, finally, the message is introduced as a modulatzation persists in a certain range of parameter mismatch be-
ing signal on the values of a parameter from the transmittetween drive and driven systerf@5]. This robustness of gen-
system[4,15,1€4. These last three techniques owe their suceralized synchronization has been used to estimate
cess in recovering the message to the phenomenon of syparameters of chaotic systems from a time series by mini-
chronization of two chaotic systems. mizing an average synchronization error with respect to pa-

Synchronization of chaotic systems is an important revameter mismatch28]. Once the actual values of the drive
search field with applications in many areas of science angarameters have been discovered, identical synchronization
technology, such as electronics?, 18, laserd19], chemical  would be possible.
and biological systemg20,21], communication$4,12], and Short[1] and Short and Parkg@] propose a method to
extended system{22]. Chaotic systems may display differ- unmask messages based on the full reconstruction of the
ent degrees of synchronization. Its best realization is callephase space from a time series followed by local estimation
identical synchronizatiofi6,12,13 referring to a full coinci-  of the dynamics of the carrier on every point of the chaotic

attractor. This can be done in such a way that the message

emerges as a deviation from the underlying dominant dy-
*FAX: +34 943 219306. Email address: ccpdadaa@si.ehu.es namics. Perez and Cerdeid extract Lorenz chaotic mes-
TFAX: +34 943 212236. Email address: popsayuc@sq.ehu.es sages using two-dimensional return maps. In general, these
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methods need long time series for the phase-space dynamics

XK=0(y—X),
reconstruction to be reliable and heavy computational cost r3=%)
before the hidden message can be extracted, which make A Al o s
y=px—y—xz, 2

them unsuitable to work on line.
Other methods use parameter-adaptive control techniques B e
to attempt to decode information coded in chaotic signals. 2=xy= pz,

Parlitz [6] proposes autosynchronization, that is adaptiveyhich only requires variable from the drive and has been
control of the parameters driven by the synchronization €widely used as a master-slave coupling scheme for synchro-

ror, as a way for model parameter estimation and he finds ag;;ation. It can be easily proved that these systems synchro-
analytical solution for the adaptive parameter laws foeén  ni-e when their parameters are set identical

hocvariant of the Lorenz system. He also develops a numeri-

cal procedure to find local adaptive laws valid for any drive =0, p=p, E:lg_ ©)
system of known structure, what makes it a potential decoder
of great flexibility. The method proposed [iii] by Zhou and Now, we will develop a stable adaptive rule based on the

Lai also performs a local adaptation of the parameter valuesonstruction of a Lyapunov function that assures stability of
of the receiver supposing that an initial estimate of the keyhe identification system and convergence of the parameters
parameters is available. It can be used to decode messages, 3 to their nominal values given by E(B). Let us define
masked through parameter modulation but requires the comhe following errors:

struction of a local empirical Lyapunov function, which

again means the procedure is not particularly fit for real-time e()=X(t)—x(t), ey (t)=o(t)—o,

work. Liao and Tsa{8] design an adaptive observer-based

receiver to synchronize the drive system given certain struc- ey()=y(t)—y(), e,(t)=p(t)—p, 4
tural conditions for the drive. However, the structural condi- N

tions required by the method are quite restrictive about the e(t)=2(t)—z(1), ezg(t)=p(1)—-p,

nonlinearity of the drive system, and the range and nature of ) , o
the unknown parameters. then the dynamics of the error variables is given by
In this work we address the problem of reaching identical

N . e=(e,—e)o+(y—xe,,
synchronization to a Lorenz system with unknown param- = (8= 8ot (y=Xe,

eters via global adaptation of the parameters of a driven sys- &,=—e,+x(e,—e,) (5)
; : y y p o Tz)

tem coupled to it according to a Peccora and Carrad]

type of coupling. The adaptive parameters are controlled to &,=xe,— Be,—ze;.

reach convergence to the nominal values of the parameters in

the drive system. Identical synchronization is then achievedlet o,>0 be a higher bound orr. If a candidate
and the conveyed message can be extracted out of the chaoligapunov function is chosen as

signal. The adaptive rule presented in Sec. Il needs, in prin-

ciple, access to the three-state variables of the drive but can V=3[ef+N(ej+e)) +es+ertes], (6)
be modified to work when only the carrying variable is ob- N _ i
servable. This is done in Sec. Ill, and the approach has th&heréeA=>\*=oms/4 and we select the following adaptive
advantages of being global, able to be used on line, anf'€S:
successful in recovering the message, with the only require-
ment of a coarse estimate of one of the drive system param-
eters. In Sec. IV the proposed scheme is then applied to a

éo:‘.}:ex(x_y)a

communication system for unmasking a hidden message. Fi- €,=p=—Axey, @)
nally, Sec. V presents a discussion and a summary of the .
concluding remarks. es=pB=\2e,,
Il. PARAMETER-ADAPTIVE RULE. with the constraint & o< O max» it follows that the time de-
GLOBAL SYNCHRONIZATION rivative of V along the trajectories of ECQS) is given by
We consider a Lorenz system with parameterp, 8 as V=— &e)2<+ Te.ey— Ae)z,— A,3e§

the drive system

= —(e,/a—e, \*)2—(A—\*)e2—\Be=<0, (8)

x=o(y—x), _
which guarantees stable convergence to zero of the error
y=px—y—xz, o,p,5>0, (1)  system.
Figure 1 shows the errors in variabbey,zand the param-
z=xy— Bz, eter trajectories when nominal parameters in the drive system

are set toor=16, p=45.92,8=4, and initial values for the
and the driven system originally proposed by Peccora andriven system arer=3, p=1, 8=1. As it can be appreci-
Carroll [9] ated, convergence of the parameters to their nominal values
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FIG. 1. Convergence of the adaptive parameters to their nominal -50

values and synchronization errors. 5 10

time (s)
is very fast and the driven system synchronizes its three vari-

ables to the corresponding ones in the drive system. FIG. 2. Adaptation with access to variabteonly and param-
eters o and p unknown. Parameters in the drive system are

=16, p=45.92,8=A4. Initial values for parametei® andp are set

I1l. GLOBAL SYNCHRONIZATION USING ONE o X
arbitrarily, andB= g=4.

VARIABLE ONLY

We have shown that global synchronization to a Lorenz
system with its three parameter values unknown can bep=—AX(y—y)=—AX(§—y+X—X)=—AX
achieved if the three variables in the drive system are avail-
able. Nevertheless, many potential applications of synchro-
nization may require getting synchronization with the infor- . L
In this case, the true value of parameters critical. Fortu-

mation provided by only one of the variables from the drive : X .

system. In principle, a possible solution to get a good apnately, i convergence Is to work, we can SUbStA'tUte the pa-
proximation to the nonaccessible variables is to resort to th?Metero in Eg. (11) by the adaptive parametér of the
derivatives of the accessible one. This approach will permififiven system, leading to the definitive adaptive rule

practical applications as long as the control rules are robust

X
y_ __X
(12)

enough and the ratio signal to noise in the derivatives is not L Lo X
too poor. p——)\x<y— §_X)' (12
Aiming at synchronizing variable with no access to vari-
ablesy andz, we have from Eqs(1) and(7), Thus, we can attain global synchronization of both sys-
_ % tems when parametetsandp are unknown using the adap-
o=(X—y)e,=— ;ex, ©) tive rules foro andp given by Eqgs.(10) and(12).

Following the reasoning, a rule for the adaptation of pa-
wheres seems to act as a time constant. So, we could try thE2meters might also be established resorting to the second

following adaptive rule for parametér: derivative of variablex. Nevertheless, the convergenceff
_ is more sensitive to the actual value of the parametset in
i X the adaptive rule, which makegsreaching its nominal value
g— * exu (10)

in the drive system not such a straightforward task.
_ _ Figure 2 shows the convergence of paramefeendp to

with o* >0 being a constant. their nominal values and the error between variaklegsthe

Unfortunriltely, this adaptive rule only works when param-grive and driven systems with* = 12. The results are very
etersp and B in the driven system are set at their nominal satisfactory and synchronization of variable has been
values. But, if we suppose parametersind 8 are known, achieved within limits of precision good enough for most
the rule obtains identical synchronization, and consténts  applications. It might very likely be the case that the dynam-
not at all critical. ics of the system is smoothly sensitive to parametexhich

In a similar way, we have also rewritten the adaptive rulemakes it a relatively mild parameter to control. On the other
for parametepp, from Eq.(7), where only variablecand its ~ hand, parametgs seems to be wilder but the adaptive rule is
first derivative appear, robust enough as to be able to overcome convergence diffi-
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) R ) FIG. 4. In(a) the white noise added to the carriép) the trace
FIG. 3. Trace ofp unmasking the message. (@ =4, and in  of ;, unmasking the message, and@, the parameter modulations
part(b) 8=5 (c) shows the parameter modulation at the transmitter.at the transmitter.

culties and also potential noise introduced by the derivativegoarse estimate, the adaptive rules are robust enough as to
Adaptation of parametgs is even more critical and requires show that a message is being masked by the chaotic signal.

additional research. We have tested this robustness of adaptive rules in the
presence of noise adding white noise to the scalar signal sent
IV. UNMASKING MESSAGES by the transmitter. In Fig. 4 we show the results Wifh

=5, and a normally distributed white noise with a power

~ The adaptive laws that have been presented in the precedpectrum density of 0.01 and correlation time of 0.1 s added
ing sections can be successfully applied as a procedure {g ihe carrier.

decode information by tracing adapted parameters and by
tracing the breaking of the synchronization process produced
by the message. For the numerical simulations, our transmit- V. DISCUSSION
ter is a Lorenz system which paramejgis modulated by

the message according to H43), We have reported global identical synchronization to a

Lorenz chaotic system without any knowledge about the val-
ues of its parameters. A robust adaptive rule has been de-

X=o(y=x), signed for identifying the Lorenz parameters when an appro-

) priate driven system is coupled to the Lorenz chaotic
y=pX—y—xz, o,p,8>0 (13 oscillator. One drawback is that the rule needs access to the
three-state variables of the chaotic system and many poten-

z=xy—[B+s(t)]z, tial applications of synchronization may require getting syn-

chronization with the information provided by only one of
and the messaggt) is a square wave that produces a varia-the variables in the drive system. This is the case, for in-
tion in B according to the bit sent3(0)=3.6 and3(1)  stance, when trying to recover massages hidden in chaotic
=4.4. To uncover the message, the receiver sets the parargignals. If access to the full dynamics of the system based on

eter,Z% at a fixed value, and parametérsand p are adapted the information provided by only one of the variables is re-

according to Eqs(10) and(12). The trace of parametér is quired, it seems natural to resort to the derivatives of the
used to uncover the message. accessible variable. Although, in general, control of temporal

In Fig. 3 we show simulation results for two fixed values trajectories based on derivatives may become unstable due to

- . . their poor signal-to-noise ratio, under favorable circum-
of B, and parameteré and p set at whatever reasonable b 9

i t the beainni f hronizai Th stances, with good quality derivatives and robust rules, it
position at the beginning of synchronization. The messagf:nay work within limits of precision still of interest for prac-

frgtqueincy ('js.ﬁo'l flt.bm th'sl partlculldarbvaluedlslnoé_ v)e;y tical applications. In the case we report here it works per-
critical as different time scales could be used. In Fig) fectly well even in the presence of noise and we have been

parameter3 has been set at 4 but this nominal value is, ingple to restate the adaptive rule requiring access to variable
fact, never taken at the drive as modulation abruptly movegnly, if parameters from the drive is known.

the parameter up and down its nominal value. In Fig)3 This ability to reach identical synchronization has been
paramete3 has been set at 5, which means a 25% deviatioused to attack messages hidden in a chaotic transmitter. We
from its nominal value. Nevertheless, even with such ahave shown how the adaptive rules can be used to unmask
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messages coded in a Lorenz attractor. Tracing the adaptivfer the convergence of the rule. The advantage of a Peccora
parameters when identical synchronization has been reachedd Carroll style of coupling is that the receiver only needs
is a very effective way to decode the message. The method the transmitted variable whereas in other styles of couplings
robust enough as to be able to disclose the message evenisfmay need the whole set of drive variables. In this last case
parameterB is not precisely known. The procedure works the substitution of a function of the transmitted variable and
efficiently as long as we have a coarse estimate of parametés derivatives for the nonaccessible variables has to be done
B even if the two other parameters are completely unknownin both the adaptive laws and the receiver itself, which
The unmasking is global, can be performed on line withoutmakes the whole system more complex and convergence
any kind of computational preparation, and works with noisymore critical. Certainly, each case will require its particular
signals. analysis and, consequently, to know the structure of the
This procedure is, to some extent, susceptible to generaliransmitter is a necessary precondition for this procedure to
zation of other systems of known structure. If the full dy- be applied at all.
namics of the drive is accessible and we are free to define the Thus, the style of on-line parameter-adaptive autosyn-
structure and type of coupling for the receiver, it is alwayschronization of the kind reported in this and other works
possible to design an autosynchronizing system. For inraises doubts on the security of chaotic encryption methods
stance, designing a more general coupling that takes as inpbased on chaotic systems of known structure. On the other
the whole set of variables from the drive and includes feedhand, it seems that as long as the structure of the chaotic
back terms, and using a style of the Lyapunov function as thé&ransmitter remains as part of the encryption key, these adap-
one used in this work, one can always deduct an adaptivéve control-based techniques will still find difficulty in try-
law for the parameters that will lead to a state of identicaling to break the security of the transmission.
synchronization in the dynamics of the drive and response
systems. Once an adaptive rule using the full dynamics of the
drive is working, it can be rewritten in such a way that it
only requires the accessible variable. Nevertheless, as the Support from University of the Basque Country, Project
nominal values of the drive parameters are unknown, thé&lo. UPV 140.226-TA075/99, and from Diputaciode
new adaptive laws will have to depend on their estimatedsipuzkoa, Project No(Z319 OF 344/1999, is acknowl-
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